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ADffusion Process and Its Application to Detecting -

a Change in the Drift of B3rownian Motiona l

M',she Pollak

Hebrew UnIveroity of Jerusalem 9~

=~d

David Siegmund
Stanford University

1. Introduction.

Consider a Brownian motion process 17(t), 0 !5 t < o, which during the time interval

[0, v] has drift 0 and during (v, co) has drift is > 0, where v _5 oo and pz are unknownm

parameters. We seek a stopping rule T wich "deterts' the change poirt ;/ "-s son as

possible." For example, W(t) may represent the cumulative output of an iadll.trial process.

which is under control so long as the average output is 0, but which may go out of contrc! and

then must be corrected as soon as possible. Other domains of application are to maintaining

quality of repeatcd assays (Wilson, et al., 1070) and surveillance of birth records for a

possible increase of genetic malformations (e.g. Weatherall and Hasket, !176).

Let P, denote probability when the change occurs at time v (V wi ourn Te tiep4 ideal c

on u is suppressed. When it seems desirable to emphasize this d<copndenc:'. we Shall write

Paa.,. Note t eat Pk P0 0 .) A stopping rule T to detect the change point should have s

arge value for E p(T), i.e. if no change occurs, the expected time until one i3 "dtrctes&

should be large. Subject to E.(T) being large, a good detection rule suouldi in Foume sense

have small values of E(T - v I T > v), i.e. the time after a change occurs mtil it is

detected should be small. Some common detection rules (inchrdiug thoge conid'red in thg

paper) satisfy s aps, E a(T - i T > v) = Eo(T). in which case a detectiat rords can to same

extent be valuated in t erms of it Average Run Lengths: E pn(e), which we l write-

and E0(T), which should be small.papr)saisy up, E(T- IT v =Eo().inwhchcae dcecio c!, cn o sme,""-...'.'
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One possible solution to the detection problem is given by the so-called cusum tests pro-

posed by Page (1954). For a systematic d-3cussion of these procedures, see van Dobben de

Bruyn (1068). An outstanding contributicn to the substantial literature on cusum processes

is Lorden (1971), who shows that they are asymptotically optimal when E_(T) is infinitely

large.

Shiryayev (1063) and Roberts (1066) independently proposed the same competitor to

cusum tests. Recently Pollak (1984) has proven an optimality property for the Shiryayev-

Roberts rule (in discrete time - see Appendix A for a brief discussion of this result in the

present setting) which seems considerably stronger than Lorden's asymptotic optiniality of

cusum stopping rules.

The purpose of the present paper is to make a quantitative comparison of the Sbiry yev-

Roberts and Page procedures. We do this in the context of continuous time in rrder to use

the machinery of diffusion processes to perform explicitly certain calculations. which seem
impossible in discrete time. -See, however Polak, 1983, who makes considerable rrogr's.

on the evaluation of average run lengths in discrete time.N Although the continuous time

results are not especially good approximations to the corresponding quantities in discrete

time, they provide very useful comparative information on which to base selection of a

stopping nile.

The paper is organized as follows. The Shirayev-[Loberts process is defind In-Setio,

2. and shown to be a novel diffusion process with some surprising properties. We also spec-
ify more precisely the basis for our comparison of the two procedures and g;ve the results of

some elementary calculations. These developments continue in Secton 3, which containtan

asymptotic evaluation.of E,(T - v I T > v) when v and E(T) are large. In Seeti,4 " we

define a modification of our basic procedure and give an asymptotic eva!uation of its average

run length. Nuimerical comparisons and a discussica of their sig-nificance are eoiitaincd i
S~t'ion Soeni open problems are mentioned briefly in Section 6. The readr .v!",_se prin-

cipal interest ir in our conclusions may wish to read Section 2 (through Proposition 1) and

then skip directly to Sections 5 and 6, before returning to the derivatiois. Our conclisions

are roughly these. In simple situations where the two procedures can b-e di_-ctly conpare-l.

-°2
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neither seems dramatically superior to the other. However. the Shiryayev-Roberts proce-

dure is more easily adapted to complex circumstances and consequently warrants additional

study. ee Section 6 for examples.)

2. Definition of the Procedures, Criteria for Compari- on,

and Elementary Operating Characteristics.

Suppose momentarily that at time Y the drift of W(t) changes from 0 to soie knowvn

value 6 > 0. Although this will rarely be true, it is possible that a procedure derived

under this hypothesis is useful even if the drift I after time v is uknown. Also, for the

sake of motivating our stopping rule, suppose that v is itself a rando:m -.riable which is

exponentially distributed with mean 1/A. Then the posterior proLability that there hms

been a change before time t given the data until t is

P{V < tI W~a)q < t)fo0 e (-A,3)eXp[6-t(',(t) - W(8)1 - ,'2(t -. 3)/21d3

" '''') f Aexp(-AS)exL6{W(t) - W(.)} - 6,2(t - f)/]ds + exp(-At)

Consider the rule which stops and declares that a change has taken place when this posterier

probability exceeds some threshold c for the first time. (For a particular lcss structure

Shiryayev, 1963, has shown that the Bayes rule has this form.) Fur A close to 0 this

stopping rule is appro.imately

'a
T = TD = inf{t : exp[6{W(t) - W(s)} - 62(t - -q), '2' d , (1)

which is a stopping rule proposed by Shiryayev (19,3) and Roberts (196).

Page's rule is similar, but is motivated by maximum likelihood rather than Bayesian 2

considerations. It is defined by stopping at

T = inf{t :6[W(t) - 8t/2 - min{TV(s) - 6/2}1 > c}. (2)

Iu principle we would like to choose B and c, so that Eo(T) = Ez(2), then compare

E,(T - v T > v) and EA,(T - v I T > v) as fumctions of both v w.d p.. In fact our

compariscus are basically between the extreme cases v = 0 and v = oo. So:,ctime. tlxy

are asymptotic as B (hence also c) -. oo. The easiest comparisons are, of course. when we

suppose that the only possible vale of p is the hypethesized value p. = 6; but we shall also -:

3' .
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consider other possible values. (!a Section 4 we introduce a modification of the stopping

rule (1) which is designed to deal with the case of unmown p.)

We begin with a detailed examination of the stopping rule (1). Let

R(t) = exp[6{W(t) - W(a)) - 2(t - s)/21ds. (3)

Since for fixed a exp[5{W(t) - W(a)} - 62(t - s)/2] is a Po-marting'ale in t for t 8 a, it

follows that R(t) - t is also a P~,-martingale. Also E{R(t)} = t. An easy applicatio-' of

optional stopping (Loeve, 1963, p. 534) yields

Proposition 1. Eoo(T) = E,{R(T)} = B.

Remark: The martingale property of R(t), which yield, a simpk" formula for E,_ (T), proves

to be very useful in adapting the Shiryayev-Roberts rule (1) to deal with more complicated

problems. See Section 6 for some examples.

From (3) it is easy to see that R(t) is a Markov process with stationary transition

probabilities (as long as the drift of W(t) does not change). It follows from Ito's fori aila

that for all I the P0,, stochastic diiferential of R(t) is given by

dR(t) = {1 + p6R(t)}dt + 6R(t)dW(t), (4)

where W (t), 0 < t < oo, is standard B-ownian motion (with drift 0). Hucne under Pj,, the

differential generator cf N(t) is given by

Df(z) = -62 _-T'(z) + (1 + i6z)f'(x) (z > 0). (5)
2

From (5) and standard diffusion theory it is possible to compute the average rM lengths

Eo.,(T) in a fairly explicit form. A convenient reference for the following calculations is

Karlin and Taylor (1981, Chapter 15).

The scale function S,(z) of the process R(t) is determined by integrating the relatica

s,(x) = exp{2/(, 2Z) - (2jslogx()/,)

0 -and the speed measure is given by

dtfp(z) dz/6 2 X2S1 (Z). (7)

* 4



It is easy to see that

0j{S$.(1) - S,(x)}dMp(x) < co (8)

and hence 0 is an entrance boundary.

Since R(t) is a Markov process with stationary r-ansitions, we can c.sider the pro-

cess starting from R(0) = z. When this is the case we shall write E' and F' to denote

expectation and probability. For a < z < b and R(0) = z. let N = inf{t R(t) q (a, b)}.

Then for nonnegative finctions h

f N h[ f ](t)}dt = jh(v) G(z,;a.,b)dMf.(y), (0)

where

G.(x, y; a, b) = 2{S,,(x) - S.(a)}{S.(b) - S.(y)}/{S,,(b.) - S,,(a)} (-" - L')

SG(y,,x;a,b) (z V).

Letting a -- 0, then z - 0 and using (8), (9) yields the following result. obtaiied by

Shi.-yayev (1963) in the special case a = 6.

Proposition 2. For the stopping rule T defined by (1) and for all p

SB
Eo,.(T) = 2 {Sp(B) - S.(yj)}dMp(y), (0)

where S and M are given by (6) and (7). in the special case is = 0 this becoxrres E, (T) =

in agreement with Proposition 1. In the special case is = 9 (!0) yields

Eo.6(T)= 26- 2{logA + exp(l/A) (logz)exp(-z)d. Il

where A - 62B/2. Letting B -- oo yields

Eo,6(T) ( l2 {Iog A - -y + O(A - ' log A)j, (12)

where , .5772 is Euler's constant.

Remark: It is easy to evaluate (10) numerieally. For some pu;rposes one probably obtaizs

more insight from a simple asymptotic expansion like (12). It is possible to obtain similar

exptansions when ,' # 6, but the calculus and the resulting expressions are much ricre

complicated. The details are omitted.



Fcr ,he purpose of evaluating Ev(T - v T > v) as v -o oo, it will be helpful to know

the Po limiting distribution of R(t) (cf. Section 3). Since E-,{.r(t)} t. it is somewhat

surprising that (under P,,) R(t) is actually recurrent.

Proposition 3. For any initial state R(O) z, rand for all y > 0

lir P.,{R(t) < r} = Cxp(-2/6 2 y).
1.o

Proof. Let r" = inf{t R(t) = z}. For fixed u > z = R(0) let r denote the tine of first

return to z after passing through u. Then

E (T) = E (r.) + E"(r2 ),

* - and the right hand side ma 7 be evaluated by taking appropriate limits ta -b 0 or b -. co

in (9) with h = 1. The result is that

E(r) = 2{So(u) - So(z)}Mo(0, oo), ,l j

which is finite by (6) and (7). Let H(t) = P {R(t) < t}.

By the standard renewal argument

H(t) = P, {> t, R () < v} + [ H(t - s)PL{r E ds}.
J0

By (13) the renewal theorem applies to yield 00
lim H(t) ={E (r)-  P ,{r > t, R(t) < { )}dr

:~~~ 30J -

"--= {Er(r) I{R(t) < y}dt .

The numerator can be evaluated by the same limiting process that led to (13), now with

0i h(z) = I(z < y), to show that

lir 11(t) = do() do(z).

~,Using (6) and (7) to evaluate these integrals completes the proof.

The process Y(t) = 6[W(t) - 6t/2 - min{W(8) - 6 2)] which deflhes Page's st0ppin,

rule (2) is also a diffusion process. this time with a reflecting barrier at zero, so the same

. ;. -.. . . .. : - - . .. . .. . *..* . .*. **.....- . :. • : .. . .- • .. - . - ., . . ,,. .. - .: '... . . .. . .



theory delivers the znerage run lengths and Poo limiting distribution for this process as well.

On the other hand, the relation of (2) to the stopping rule of a sequential probability ratio

test, which was noted already by Page (1054), yields a more clementary computa:-. of

average run lengths; and the Po limiting distribution is also easily computed by standard,

direct arguments. We summarize the relevant results in the following proposition:

Proposition 4. Let T be defined by (2). For all p

E-o,.(T) = 2(2A - 6)-2[c(2A - 6)/6 + ep{-c(21 t - 5)16) - 11, (14)

where for p = 8/2 the right hand side of (141 is defined to be (C/S) 2 . For all z > 0, y > 0,

as t -o.

P',{Y(t) <,} -I - exp(-'. (IS)

By Proposition I and (14), equating E,(T) with E,(!t) meauns setting A exp(-c) -

c - 1, where A = 62B/2. This can be asymptotically inverted as A -- oo to yield c =

log(A) + {log(A) + I/A + o(1/A). For the special case p = 6, zubstitution of this relation

into (14) yields

Eo,6(T) 26-{log(A) - I + O(I/A)}.

Comparing (12) ands (16), we see that E 0,6(T) is asymptotically smaller t'-mn Eo,.(T), blt

the difference is not large enough to indicate a strong preference for Pages procedure. ror

r # 6, the procedures are compared numerically in Section 5.

3. Asymptotic Evaluation of E(T - v IT > v) as v and D - o.

In this section we try to compare T and T when the time of change, v, is large and the

stopping rule has not yet signaled a change. The optimality considerations of Pollak (1084)

(see also Appendix A) suggest that the Shiryayev- Roberts rule should be better than Page's

under these conditions. We shall see below that this expectation is essentially correct, but

the difference is usually small.

A possible formulation is to evaluate limE,,(T - v T > v) with D fixed. H.wever,

this seems difficult technically and also inappropriate conceptually. In mo-t applications

we envision that the cost of a false alzrm is substantial; and hence, at least insofar as we

7



are able to make crude prior judgments about the range of V, we should choose B roughly

comparable to v - or perhaps larger. Here we shall suppose that v and B are siniult ancously

large, which, by virtue of the following lemma, allows us to utilize the P,, unconditional

limiting distribution of R(s) calculated in Proposition 3.

Again let EI (P") denote expectation (probability) when R(C) = z.

Lemma 1. For any x, y, t > 0

P{R(t) < y I7 > t} _.P{R(t) < g).

Also Po{R(t) <y} > Poo{R(oo) < }, where R(oo) denotes a random vauiable having the

distribution evaluated in Proposition 3. As t and B -, oo

P,{R(t) < y IT > t} - P. 0{R(oo) < y}.

Since this result seems potentially of wider interest than the specific technical require-

ments of the present paper, and since our proof uses essentially none of the structure of

R(t) beyond the fact that it is stochastically monotone, a complete proof of Lemma 1 will

be published elsewhere.

Theorem 1. Let A = 62B/2. Suppose i> 0 and B, v -. oo. For 1 > 6/2

E,(T - I T > v) = { -(- 6/2) 1-'[log A - - - '2 'It,- 8/2)+ o(]

For 1 = 6/2

E,(T - v T > {) = 6-{(ogA - -)+ 2/6 + o(I)}.

For 1 < 6/2

E.(T - v I T > Y) = {6(6/2 - I))-'{A'-2 1 "/'r( - 2.t/6) - lom A+ y - ( - 2pIb) + o(l)}.

Here r denotes the gamma function and y -() a - .5772 is Euler's constant.

"*"- Proof. We star from

E,.,(T - v IT > v) = j Eu,,(TD)P{P,(v) E d- T > v}

= E.,O(r) - Eg,,(T.)P64{R(v) E d IT > ).

* 8
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To compleie the proof, we first replace the measures P&{R(v) E dz T > v} by their limit.

P={R(oo) E dz (cf. Lemma 1), and then evaluate the resulting intelrals (cf. Proposition

3 and (6), (7)).

To justify replacing the distributions P.{R(v) E dz j A' > v} by their limit, it su,s

to show that 9(z) = E (t,,TZ) is uniformly integrable with respect to th.'se distributio'...A.

But by Lemma 1, the distributions are stochastically smaller than their limit; and since g

is monotone increasing, it is uniformly integ-rable if and only if it is integrable with resnc-ct

to the limiting distribution. It follows from Proposition 2 and some calculation that for

any A > 0 there exists r < 1 such that g(z) = O(z'). From Proposition 3 we see that

P_,{R(oo) > x' - 2/62x, so g is in f:%ct integr ale. Evaluation of the :esiltin. integ r ls to

obtain the results stated above is sketched in Appendix B.

An essentially identical argument applies to Page's procedure. (In fact, as noted

above, it is possible to abstract the essential features of Lemma I to cover both proceesc3

simultaneously.) We record the final result as Theorem 2.

Theorem 2. For T defined by (2), as c and v --+ co, EZ(T - v j T> v) is ,iveL appro.-

mately by the following expressions for the respective cases (i) A # 6/2 and (ii) it = 5/2:

(i) {,, - /2)}-'[c - 1- 62 /{2,z(.,p - 61)} + {,/(2, - fl} exp{c(1 - 2 ./S)} + ol)},

and

(ii) -2(c2 - 2) + o(1).

If e is defined by the relation A = exp(c) - c - 1, so that E,(T) = E0,0 T). the results

given in Theorem 2 are easily rewritten to be directly comparable to those of Theorem

1. For examle, Ev,(T - v I T > v) is asymi ._,tically smfller than Et,(T - v t > V) if

< < (1- - ')-6 = 1.13b, but not otherwise. The differences are not large if p> 6/2. The:Le

results explain the general conclusions of Roberts (19G), which in his Case were based on

a Monte Carlo experiment.

Remark: Shiryayev (1933) co;:idcrs the p:oblem of -detection of d,.-.traction of a station-

ary regize," which has some technical points in common with the preceding discussion, but

is conceptually quite different. See Appendix C.

4 9



In the preceding sections we Liave studied procedures which are approximately optimal

*under the assumption that at time v the change from p A 0 is to a known value IL =S.

Since this assumption is never satisfied in practice. we ha,.'e evaluated these proceOdlirt's for

*general values of Is. Now we consider a generalization of the Shiryayev-Roberts rule for the

- case of unknown p.

Let G denote a probability on (0, cc). (The distribution G could be interpre' ed as a

prior distribution for the value of is after the change at time v-.) Let R6(t) be defined by

(w) where now we use a subscript to denote dependence on the value of k. Define

R(t) =e t ?F(t)dG(y,), (17)

and let

T = th=inf tR(t) B (!DI

be defined as in (1), but with R in place of R. Since I?.(t) - t is a P., martingale with

*mean equal to 0 for every value of y, it follows that R(t) -- t is also a P,, martingple with

mean 0. Hence, exactly as in Proposition 1

E,(, ) B. (9

Before turning to an evaluation of Eo,,.(f), we note that an analog-ous modification of Page's

rule was defined and studied in P"ollak and Siegmund (1975). Unfortunately, howe7er. we d

17 not know an approximation to the P,, average run length of this procedure because thcere is

no similar martingale structure. Hence we were limited then, as we are now, to examining

- the E0O,, average run length. in Secton G we give other examples of processes- for which a

0 version of the Shirywyev- Roberts rule and the P,, average run length are easily obtained1.

while the corresponding analogue of Page's procedure seems much more difficult t-,- study.

Theorem 3. Let A > 0 and suppose that in some neighborhood of ,4 the nieansutre :vi;

* positive, continnous density g. Then as I) -a

E0.~(12 ~C[lo, B + log log D - I1- y- log{2wg() log(2/p) + uI]

10
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The bjazic idea oa 'he proof of Theorem 3 is already apparent in the ar-urnents of

Pollak and Siegmund (1975) or in the more general extension of Lai and Siegmuud (1979).

A completely rigorous development of the corresponding result ia discrete time has been

given by Pollak (1983). For the sake of completeness, we give a brief outline in Appendix

D.

By comparing Theorem 3 with Propositions 3 and 4, one sees that it is possible asymp-

tc ically to do as well to first order as in the case of knovnA p = 6. Fur moderate sample

sizes, the higher order terms play an important role, which is investigated numerically in

the next section.

5. Numerical Comparisons.

Tables I and 2 compare T given by (1) with T given by (2) for the cases v = 0 and

v -- oo, respectively. The values of B and c were chosen so that E.(T) and E.(T) are

about 790, which seems appropriate for a variety of industrial sampling inspection schemes.

The entries in Table 1 were computed by integrating (10) numerically and by applying (14).

For Table 2 the asymptotic results of Theorems I and 2 were used.

Remark: The numerical integration in (10) can be quite time consuming. For the impor-

tant range p > 6/2 it is possible to show that Eo,p(T) = {6(p - 2/2)}-{og , + const. +

o(1)}, so it is possible to do the numerical computation for a moderate value of B and

obtain approximations for other B from this one value. Alternatively, in certain ranges one

can evaluate the integrals as infinite series to speed up the computations.

Tables I and 2 show that the Shiryayev-Roberts and Page rules are almost indistin-

guishable at pa = 6. For larger values of i Page's rule does slightly better, while for smaller

values the Shiryayev-Roberts rule seems preferable. The greatest percentage differences are

those favoring Page's rule when p is large and v, = 0. When v --+ oo, the difference favoring

Page's rule decreases while the small difference in favor of Shiryayev-Roberts remains about

what it is for v = 0.

Since the choice of 6 is to some extent arbitrary, it is interesting to observe thiat in

Tables I and 2 the choice 6 = 1/2 yields much smaller average run lengths for small is at

A11



Table 1

Comparison of Averge Run Lengths
0 Eo.p(T) Eo,pj(t )

(B =792, 6= 1) (c=6, 5=1)

0 792 793

.25 117 129

.50 34 36

1.0 10.8 10.0

1.5 6.4 5.5

2.0 4.5 3.8

(B =701, 6 =.) (c =4.G5, 6= .5)

0 791 791

.25 84 87

.rO 32 32

1.0 14.6 11.5

1.5 9.6 7.1

2.0 7.3 5.2
Table 2

Comparison for Large v and D

E.,,(T - v IT > v) E.,,(T - vT > v)

(B=792, 6= 1) (62D/2 = c -I-c)

.25 111 124

.50 31 34

1.0 8.8 9.0

2.0 3.4 3.3

(B =791, 6 = .5) (62B/2 =eC- 1 - c)

.25 71 76

.50 24 25

1.0 9.8 9.4

2.0 4.4 4.1

* 12
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aIaCt p nan does the choice 6 = 1. This suggests that one may

wish to use a smaller value of 6 than the cdange that one "expects" to cccur. In son.e

applications, even the relatively small increase in average run length for large i entailed by
choosing a small 6 may be too costly to mal:e this strategy seem reasonable.

Table 3 uses Theorem 3 to give comparable rcsults for ' defined by (18) with G the

distribution of the absolute value of a standard normal random variable. For values of B

in the indicated range, the use of a mixture to define !' seems generally inferior to the

practice of using an appropriate, fixed value of 6 to define either a Page or a Roberts type

rule. The situation changes for larger values of B. Some results are coutained in Tahle

4, which shows that for some inefficiency at p = 6. one can do better for extreme p by

using the mixture stopping rule '. Since the stopping rule T is asyiiptotically first order

optimal simultaneously for all i > 0, still larger values of D will tend to favor 7' over T.

However, this asymptotic optimality seems to teae over so slowly as to be irrclevant for

many problems.

Table 3

Average Run Lengths for T Defined by (18)

with dG(y) = (2/ir)1/2 e.xp(-V2/2)dp, B = 792

0 702

.25 13

.50 40

1.0 12.0

,1.5 6.1

2.0 4.1

13
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Table 4

Comparisons of !f and T for large B

(B = 5044) (c= 8, 6=1) (c= .G2, = .5)

C 5044 "44 5939

.25 202 307 175

.50 57 64 45

1.0 16 14 17

1.5 8.2 7.5 10.3

2.0 5.2 5.1 7.4

6. Open Problems.

We believe that the evidence presented above indicates that there is no pvrnuasive

scientific reason for preferring the Page stopping rule to that suggested by Shiryaye" and

Roberts, or vice versa. Depending on the specific context, one or the other might be slightly

preferable; but in general the choice may be based essentially on convenience. In this s.-ctic'u

we indicate some open problems, for which versions of the Shiryaycv-Roberts ru!e are nmrc

or less obvious and cn be studied by techniques similar to those developcd here. Page's

rule, on the other hand. secnms less suited to deal with theze new probloris. The impca.:t.

distinguishing feature of the Shiryayev-Roberts rule is the martingale prop i:y 1!tiliz, 1 ii

Proposition 1, which seems to have no analogrue for cnsum procedures.

A particularly interesting article on the applied use of ci-xim stopping ru!e : Wils,:a.

et al. (1070). In order t' control the quality of radinimmumoasays. plasn s of kuwn

composition were occasionally submitted to be assayed, with the r .sult regaried as . n:ormal

random variable with unknown mean and variance. The process is rvgurd,:d as in con'tr.l if

the mean of this random variable is the Anown composition ,nd if the variauce is "sniall."

The stopping rule shculd detect a change (either increase or decrease) iu the mean value or

an increase in the vari.ace. Mvreover. tle tar-ct " vwie for the meza is a known quantity:

but in the case of the variance the target is whatever can be achieved by careo'.l -.pplicati.n

of the assaying method - hopefuly small - but thlre is no a priori value wbich cne kuows

14
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can be rei,.ized.

This problem differs in three important respects from the very simple model described

above: (a) two-sided alternatives, (b) a multidimensional parameter space, and (c) an

unknown initial parameter value. We shall give here a brief discussion of each of these

issues, but defer to a subsequent paper a more thorough investigation.

The issue of two-sided alternatives is the simplest, at least in fairly symmetric prob-

lems. The standard modification of Page's procedure is to run two one-sided cusum tcst3

simultaneously, stopping as soon as at least one indicates that a change has occurred. See

van Dobben de Bruyn (1968) for a complete discussion. An appropriate modific-Ation of

the Shiryayev-Roberts rule would be to take a mixture of processes as in Section 4, but

with the mixing measure G giving positive measure to both positive and negative values

of p. The simplest case would be the measure putting weight 1/2 on +6 and on -6. For

simple modifications of this sort, comparisons of two procedures yield essentially the same

conclusions as in the one-sided case.

For a multidimensional parameter spaice, the natural generalization of Roberts' rule is

again to form a mixture over the parameter space as in Section 4, and the b :sic theory is

much as in the one dimensional case. To obtain a Page like process, it is possible to run

simultaneous cusum procedures (Wilson, ct aL., 1979) or use the method of mix.tires (Pollak

and Siegmund. 1975); but we have no idea what this does to the average rinm length tnder

P=.

In many respects the most interesting variation arises when the initial, in control,

parameter value is unknown. If the probability model exhibits the appropriate invariance

under a group of transformations, as in the case of a normal mean or variance, one ca'i

define a Page or Shiryayev- Roberts procedure in terms of a niaaimal invarimat function cf

the data. For example, to detect the change of the drift of Brownian motion from an initial

unknown value po to a new value AO + 6, the invariant analogue of R(t) defined in (3) is

R'(t) exp(6(seV(t)/t - W(a)} - 62(1 - a/t)/2's.

Relative to the appropriate o-fields the process R'(t) - t is a Po martingale. l1ence if

- - ' "
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T'= inf{t: R'(t) = B}, exactly as in Proposition 1 we have that , (T*) = B. Although

an analogous Page type procedure is easily defined, we have no idea what its P, av'rage

run length is.

An entirely new feature of the problem of the preceding paragraph is that evaluation

of E,(T* - v I T' > v) only at the extreme values of v = 0 and v -- co is uninteresting.

If a "change" occurs at v = 0, it cannot be detected because the new value of & cannot be

distinguished from the initial value. If the change takes place after an extremely long period

of time, we have so much data to estimate i that we are effectively back in the situation

where p is known. We expect to discuss this model in a subsequent paper.

• 16
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Appendix A

We sketch here the optimality considerations of Shirywyev (1963) and Pollak (1984).

Assume that p equals either 0 or 6.

Assuming that v has an exponential ditribution with mean 1/A and that if one stops

at t, the loss is I or (t - v) according as t < v or t > P, Shiryayev (1963) qhow? that th,-

Bayes rule stops at

r(A, c) = ia [t P{v < t j W(8), a < t) _ b(A, c)}.

From Shiryayev'"1 formula for b(A, c) it follows that b, = lim,.-o b(A, c)/\ exists aud Satisfies

cexp(6/b,) f, y-i' exp(-g)dy = 1. Hence TU defined by (1) is a limit vf Pay,,s riles foi" a

particular C = cB-

It is possible to modify TZI slightly to make its risk essentially constant in v and hence

to make TB approximately minimax. Let R'(t) denote the proLess R(t) started off from the

P,,-limiting distribution of R(s) givn TD > s as 8 -. oo. Let T' = L(f{t R'(t > B}.

Then as B -. oo

sup E,(Th - uI TB > v) = inf sup E,,(r - v I r > v) +o(1)
1# r It,

= 26 2 -{log(62 D/2) - 1 - -y} + o(1),

where the inf is over all rules r with E..(r) >_ Eeo(T'). The first eq-,a!ity follous iro:n

arguments similar to but much easier than those of Pclak (1984). Theorem 2. The secoud

is a consequence of Theorem I of this paper.
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Appendix B

Here we discuss calculation of the integrals involved ;n the proof of Theorem 1. R

suffces to evaluate (up to terms converging to 0 as B - oo)

E, - I0, ETo,(T.)d4 0 (x), (00)

where A-I denotes the speed measure MvIo normalized to be a probability (this is the "

limiting distribution of R(t)), and by (10) E ,O(T.) = 2 go f; dS,,(z)dM. (y). Yverting the

order of integration in (20), so that we intograte first with respect t:o PAO. then Ar,, yifld:;

EoO(T.)dafo(x) = 2 J {exp(-2/6 2B) - ep(-2.i6-z)} [0 dIM)dS.,(Z).

The first term on the right hand side can be recognized to eqcial E°.,(TB)ex,(-/

wnile the second, after another inversion in the order of integration, becomes

26 -2 j 2(P/-1) cxp(-2/6"y) z-'6dz d (21)

Putting these facts together shows that (20) equals the sum of (21) and

Eg,0(TD)(1 - exp(-2/6 2B)}. (22)

As B -. oo, for any # > 0 Eo,.(T8) = o(B), so (22) is asymptotically negligib!e. Hence i t

remains to evaluate (21), which is a tedious but fairly straightforward job and yields the

results given in Theorem 1.

4
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Appendix C

Shiryayev (1963) discusses 'detection of destruction of a stationary regime,' which su-

In addition to our basic assumptions, Shiryayev assumes (i) when the stopp'ing rule

(1) or (2) indicates a change, we can immediately ascertain whether a change has indeed

occurred, restarting the process (from 0) if there has been no change; and (ii) this new

process (i.e. the original process, renewed at each false alazm) has been running for an

extremely long time without any changepoint, so that the number of fMlse alarms already

observed is becoming infinitely large. Mathematically this means Cuat v -. 00, perhaps

B - co; but in any case v/B -. 0o.

Shiryayev's formulation is presumably reasonable if the cost associated with a false

alarm is relatively small compared to the cczt of observation after the cbangepoint v. On

the other hand, we envision situations where the cost of a false alarm is si-bstautial. and/or

it is difficult to tell immediately whether an alarm is a false one. Thus we have taken v and

B simultaneously large with no assumed relation between them.

With some reformulation, it is possible to bring about a partial unification of the two

viewpoints.

Suppose with Shirayev diat at each false alarm the detection process is imniediaLcly

restarted from scratch. Let S1,"-2 ,"- denote the times of successive alarm3. aud !,t L =

L(t) = max{k : S ! t} be the number of alarms before time t. Then L(t) is a P.-renewal

process with renewal epochs S,. Suppose that we agree to measure delay in detecting a

disorder not by E,(81 - v S > v) as we have in the rest of this paper, but by

- t") ff - t I S > t)P,,{ - SL(,,, E dt}. (23)

Assuming 1 = 6. Shiryayev uses renewal theory to evaluate (23) as v -. co and theu

cvaluztes this limit as B -+ oo. Assume now that v and B simultaneously become inftitzly

large, in any relation whatever. For either of the detection rules (1) or (2), it is easy to u.ne

the results of Theorems 1 and 2, together with the fact that the P distribution of v - SL(,,)

I 19



becomes more diffuse as E.(SI) -- co, to show that the asymptotic evaluations given in

Theorems 1 and 2 are also satisfied by the new criterion (23) for any ,*.> 0.

20
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Appendix D

in this appendix we indicate very informally the ideas leadin- to Theorem 3. We

assume throughout that v = 0 and write Ep to denote expec'atton

For the stopping rule (1) with j = 6, we have
IT

logB = pW(T) - p2T/2 + log exp{-pW(s) + p2a/2}d8,

so by Wald's identity

log B 2 - E,(T) + p log exp{-W(l) + 8  (24)

As B -c co, T = T3 -o oo in probability, so

o ~ ~ ~ E [ log f eXp{ jsW(8) + I28/}. + A lg~x{~()+%2d~ ~)

(25)

and this last expectation can be evpluated -xactiy by consideration of (12), (24). and (25).

For the stopping rule (18), some algebra yields

logB = AW(fl - A 2 /2 - -{W(T) - pT}2 /T -

+ ~l~og j tl/2{u[tI/2 - W(T)!/}lf eXp{-,W(,) + V2e,1d dG( ) (26)

The (random) me:sure d&(y) = +t/-pt"/2{y- W()/lT}IdG({) becomes progressively

more concentrated around W(T)/t as B and hence T co, and with overwhelming P.-

probability, W(T)/t becomes concentrated around p. Hence as B - oo the expectation of

the final expression in (26) converges to the expectation appearing on the right hand side

of (25), wLich can be evaluated. By Wald's identity and some additional calculations we

have as B -- o

EM{pIW(.t) - p!'/21 = p (T),
2

EO,4{W(f t)- }2/fl1,i
and

E;,log(t)} .-- log{E,(T)} . log{(2loB)i/p}.

Substituting these results into (26) yields Theorem 3.

21
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